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Abstract

Given n uniformly and independently distributed points in a ball of unit

volume in dimension d, it is well established that the length of several combi-

natorial optimization problems (including the minimum spanning tree (MST),

the minimum matching (M), the traveling salesman problem (TSP), etc.) on

these n points is asymptotic to P(d) n(d-1)/d, where the constant B(d) depends

on the dimension d and the problem solved. It has been a long open problem

to determine the constants 38(d) for these problems. In this paper we make

progress in establishing the constants PMST(d), 3M(d) for the MST and the

matching problem. By applying Crofton's method, an old method in geomet-

rical probability, we prove that PMST(d) 6 /, IM(d) as d tends

to infinity. Moreover, our method corresponds to heuristics for these problems,

which are asymptotically exact as the dimension increases. Finally, we examine

the asymptotics for the TSP constant and improve the best known bounds for

d= 3,4.
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E53-359, Cambridge, MA 02139.
tGarrett van Ryzin, Operations Research Center, MIT, Cambridge, MA 02139.

1

�C3� ��_� _�_ �__��I�_



Key words. Probabilistic Analysis, Euclidean Spaces, Crofton's Method, Mini-

mum Spanning Tree, Matching.

2

--- ------ ---- --- X____ _1·1__ __

1l



1 Introduction

Research in the area of probabilistic analysis of combinatorial optimization problems

in Euclidean spaces was initiated by the pioneering paper by Beardwood, Halton

and Hammersley [1], where the authors prove the following remarkable result:

Theorem ([1]): If Xi are independent and uniformly distributed points in a region

of Rd with volume a, then the length LTSP of the traveling salesman tour (TSP)

under the usual Euclidean metric through the points X 1 ,..., X, almost surely sat-

isfies

lim LTSP Tsp(d)a/d,
n--oo n(d-1)/d -

where PTsp(d) is a constant that depends only on the dimension d.

This result was generalized to other combinatorial problems defined on Euclidean

spaces, including the minimum spanning tree (MST) ([9]), the minimum matching

(M) ([6]), the Steiner tree (ST) ([8]), the Held and Karp (HK) lower bound for the

TSP ([4]) and other problems. Indeed, Steele [8] generalized the previous theorem

for a class of combinatorial problems called subadditive Euclidean functionals. All

these results say that there exist constants 3 MST(d),,3M(d),, ST(d), PHK(d) such

that the corresponding values for the MST, M, ST, HK over n(d-l)/d tend almost

surely to the corresponding constants. One of the important open problems in this

area is the exact determination of these constants.

In this paper we make progress for two of these constants, namely PMsT(d), PM(d).

We find upper and lower bounds for the MST(d), PM(d) that are asymptotic to the

same value as the dimension d increases. As a result, we prove that

dT1 d
PMST(d) ~ , P3M(d)~ 2- e

We use Crofton-'s method, an old but surprisingly neglected method in geometrical

probability, to compute the upper bounds. The bounds correspond to heuristics for

these problems which have the interesting property that they are asymptotically
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exact as both the dimension and the number of points increases. Furthermore, the

lower bounds are based only on elementary arguments concerning nearest neighbors.

The paper is structured as follows. In the next section we find lower bounds for

the two constants. In Section 3 we review Crofton's method and use it for the MST

and the minimum matching problem in order to find upper bounds for fMST(d) and

#iM(d). In addition, we analyze the connection of Crofton's method and heuristics

for the MST and the matching problem. In Section 4 we state our central results on

the asymptotics of PMST(d) and PM(d) and extend the results for more general MST

functionals studied by Steele [9]. Finally, in Section 5 we review the best bounds for

the Tsp(d), and observe that bounds based on our results improve the best known

bounds for d = 3,4. We also conjecture that

Prs(d) d
27re 

2 Lower bounds

The lower bounds on MST(d),f M(d) are found from the following elementary ob-

servation. The MST has larger length than the sum of the lengths of the nearest

neighbor from each point. If L,(a), M,(a) are the expected length of the MST

and minimum matching on n uniformly and independently distributed points in the

d-ball of volume a , then

Ln(a) > (n - 1)N(n, d, a), (1)

where N(n, d, a) is the expected length of the nearest neighbor of a random point

in the region. Similarly, since in every matching there are n/2 (assume n is even)

edges
nMn(a) > N(n, d a). (2)

In the following lemma, which is well known, we find a lower bound on N(n, d, a).

Based on this bound Beardwood et. al. [1] find a lower bound for #Trsp(d), although

they did not include its proof. We present the proof for completeness.
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Lemma 1

N(, d,) > d (- r(), (3)

where Cd = ir) is the volume of the ball of unit radius in dimension d.

Proof

If d(p) denotes the length of the nearest neighbor to a point p, then

Pr{d(p) > r} = (1-(P'r))
a

where V(p, r) is the volume of the intersection of the given d-ball of volume a and

the ball of center p and radius r. Thus V(p, r) < min(cdrd, a). As a result,

(_ &da 1( X)l/d

N(n, d, a) = '" Pr{d(p) > r}dr > A (1 - min(cdrd/a, 1))n-dr.

If we make a change of variables to z = cdrd/a, we obtain

N(n,d,a) > /d A zl/d (1-min(z,))a-ldz

dc I
>-- d/ zl/d-(l - z)n-Xdx

dc/d r(n + 

1 (da 7

where the last two relations follow from well known properties of the gamma function

(see for example Rudin [7], p.192). 0

From (1), (2), (3), and since limn-.,o dz = I3MsT(d)al/d, limn--.OO =

l3M(d)al/d, we find the following lower bounds on fIMST(d),/lM(d):

1 1
PMsT(d) > - r( ), (4)

PM(d) > dc )' (5)

where Cd d= l2dc
where d = dr(

F(?1_+1
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3 Crofton's Method Applied to MST and MATCH-

ING

Crofton's Method is an old and specialized technique for determining mean values

of random variables in certain geometrical probability problems (see for example

[5]). It applies to problems in which n points and independently and uniformly

distributed in a region of the d dimensional space and one would like to determine

the mean value of some function defined on these points. The fundamental idea

of the method is to view the expectation as a function of the size of the geometric

region and then to derive a differential equation or this function by perturbing the

region's size. In our case, the function is the length Of the MST (or the matching

problem) of n such points and the region is a d-dimensional ball of volume a centered

at the origin.

Let L,(a) denote the expected value of the MST as a function of n and a.

Suppose we increase the volume of the ball incrementally from a to a + ba and

distribute n points uniformly and independently in the enlarged ball. We consider

two events:

* E: The event all n points lie in original ball of volume a.

* E2: Exactly n - 1 points lie in the original ball of volume a and one point lies

in the infinitesimal, spherical shell of volume 6a.

All other events have probability o(6a) and are ignored, since we will take a -, 0.

Note that

P(E1) = [a = 1- a + o(6a), (6)

and
6a [ a n-i n

P(E 2 )= n - = -6a + o(6a). (7)
a+a a+arged a

The expected length of the MST in the enlarged ball given E1 is just Ln(a). If we
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let L,(aIE2) denote the expected length of the MST given E 2, then

L(a + 6a) = L(a)P(El) + L.(aIE2 )P(E2 ) + o(ba),

which using (6) and (7) gives

L(a + a) - L(a)+ L(a) = Ln(aIE 2 ) +
6a a a 6a

Letting 6a -, 0, we obtain

dL(a) + L(a) = Ln(aIE2). (8)da a a

Observe that we can construct a feasible spanning for the case where one point

lies on the exterior of the ball (event E2) by forming the MST of the n - 1 points in

the interior of the ball and then connecting the exterior point to the closest point on

this tree. If we let Rd(n, a) denote the expected value of the distance from a point

on the exterior of the d-dimensional ball of volume a to the nearest of n uniform

points in the interior, then

Ln(alE2) < Ln_l(a) + Rd(n- 1, a).

Substituting this into (8) gives

dLn(a) n n n
d-- )+ -Ln (a) < Ln-l(a) +- Rd(n - 1, a). (9)da a a a

Note that if we defined Ln(a) has the expected length of the spanning tree that

results from inserting points according to their distance from the origin, i.e. the

ezodic tree heuristic (see Section 3.1), then we could express (9) as an equation

rather than an inequality; however, since we are ultimately concerned with the

MST, we choose to work with the MST length and the resultant inequality (9)

directly.

We are naturally led to find an upper bound on Rd(n, a).
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Lemma 2

1 (2a ) r() < R(n, a) < 2 a-) r( )+ (6), (10)

where cd = (+1 is the volume of the ball of unit radius in dimension d and 6 is a

constant such that 0 < 6 < 1.

Proof

The complement of the distribution of the distance from a point on the exterior of

the ball to the nearest point is

2a(1- A(r)/a)n, 0 < r < 2/
Cd

where A(r) is the volume of the intersection of a ball of radius r centered at the

exterior of the ball of volume a with the interior of the ball of volume a. Then
( 2a)l/d

Rd(n,a) = Cd (1 - A(r)/a)ndr.

Intuitively the asymptotically important contribution in the above integral comes

near r = 0, where A(r) Ed. In order to formalize this we make the following

observation. For every b < there exists a , such that2

A(r) Ž bcdd
< r < (2a)1/d

Therefore,

Rd(n,a) < (1--) dr + cd (1 bcd nd
a (1 )dr

IV_ bncdrd

< a ae dr + 0(6),

where 0 < 6 = 1 - b'd < 1. If we make a change of variables z = cdrd, then
a a

Rd(n,a) < - ( a | l/dledz + O()

= a l/dr()+o(6'n).
d bCdn d
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Since we can select any b < the right inequality in (10) follows.

Since A(r) < min(a, d-f d) we can use exactly the same method as in Lemma 1 to

prove the left inequality in (10). 0

We next characterize the solution to the differential-difference equation (9) as

n - oo. Upon substituting the results of Lemma 2 into (9) we note that the error

term is O(nbn), i.e. exponentially small, and therefore can be neglected for large n.

By a simple scaling argument, Ln(a) = Lnal/d, where Ln is the expected length of

the MST in a unit d-ball. Substituting this into (9) does indeed solve the differential

equation and yields the following difference equation for Ln,

L,
d + nLn < nL,_ 1 + Rdn(n- )- l/d (11)

where Rd = a ()ld r().

To determine the leading behavior of the solution Ln for n -- oo we note that

the corresponding differential equation to (11) is

dy = _y + Rd(z )- l/d,
dx xTd

which has the following asymptotic behavior as z - oo

y(x) Rd-.

Because z = oo is a regular singular point for the differential equation, the leading

behaviors of the difference and corresponding differential equations are the same

(see Bender and Orszag [2] pages 64 and 206).

To verify this we try a solution of the form Ln = flMsT(d)n(d-1)/d and check

that it is consistent with (11) for n -. oo. Substituting Ln = PMsT(d)n(d- 1 )/d into

(11) yields

/3MST(d)n(d-)/d
(d)n( )/+ PMST(d)n(d- 1)/d+1 < P3MST(d)n(n - l)(d- l)/d + Rdn(n - ) - 1/d .

Using the expansion

(n - 1 )(d-l)/d - n(dl)/d( - + O(n 2)),
dn
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and rearranging we obtain

PMST(d) < Rd + O(-)-n

Therefore, the solution is indeed consistent for n - oo if PMST(d) < Rd. Moreover,

it is also consistent with our a priori knowledge of the asymptotic behavior of the

MST length; therefore, we conclude that

21/dr() (12)

dCd

In addition, the leading behavior of the expected length of the exodic tree heuristic

is Rdn(d-l)/dal/d

With some modification, a similar analysis applies to the minimum matching.

Let Mn(a) be the expected length of the minimum matching. Applying the same

technique to the matching problem we obtain

dM,(a) + -Mn(a) < -Mn- 2 (a - cR) + Rd(n- 1, a), (13)
da a a a

where Mn-2 (a - CR) is the length of the matching of the n - 2 points in the region

consisting of the sphere of volume a minus those points within a radius Ra(n - 1, a)

of the exterior point. Note that within this region, the n -2 point are uniformly and

independently distributed; therefore, since the remaining n- 2 points are uniformly

and independently distributed in an area which is a subset of the original area

Mn(a - cR) < Ms(a) and since CR -- 0 as n -- oo

Mn(a - cR) = Mn(a) n ~ oo.

Therefore (13) becomes

dMn(a) n
d() + Mn(a) < -Mn-2(a) + n Rd(n - 1, a). (14)da a a a

Again, it is straightforward to verify that a solution of the form Mnald solves (14)

and yields

d" + nMn < nM._ 2 + Rdn(n- 1) - / . (15)
d
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The only difference between (11) and (15) is that in the matching problem given

that we match two points there are n- 2 remaining points to be matched, while in

the MST given that we connect one point there are n - 1 points remaining to be

connected.

Following the same analysis as in the MST and using the expansion

(n 2) ( d- ) / d = n(d-l)/d(l - 2(d - 1) + (n )
dn

we obtain

13M (d) 2/r( (16)
(2d - 1)Id

3.1 Relation of the Crofton method with heuristic algorithms

Crofton's method produced an upper bound for the the values of the constants

J3MST(d),PIM(d). As mentioned, the method gives rise to heuristic algorithms for

the MST and the matching problem. For the MST problem the heuristic algorithm

is the following:

1. Given the points Xl,...,X, sort the points such that Xli < X2 1 < ... C

IXnl.

2. For i = 2, 3,..., n connect Xi to Xj , such that lX, - Xl = min<i IXi - XI.

It is easy to see by induction orL i that these n - 1 connections form a tree.

This construction was proposed by Gilbert [3], who gave it the name the exodic tree

heuristic. He obtained the same constant (12) for the expected value of the ex-

odic tree for d = 2 through the use of generating functions and multidimensional

integrals. Our analysis using the differential equation approach is considerably eas-

ier, has the advantage of naturally generalizing to every d and also generalizes to

matching and possibly to other problems.

A similar connection holds for the matching problem. Namely our construction

gives rise to a heuristic algorithm, which we call exodic matching to parallel the

MST construction, as follows:
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1. Given the points X,...,Xn sort the points such that IXl < I X2l < ... <

IXnl.

2. Starting with the outer point X, connect X, to its nearest neighbor, call it Xj.

Delete X., Xj from the list of points. Repeat the procedure for the remaining

points thus producing a matching.

As we show in the next section these heuristics have the surprising property of

being asymptotically optimal as the dimension d increases. Furthermore, we find

simple asymptotic values for JMST(d), fM(d) as the dimension increases.

4 The main result

In this section we combine the upper and lower bounds derived in the two previous

sections and derive the central result of the paper.

Theorem 3 The constants IMST(d),# M(d) satisfy

1 r( + 1)r( + )1/d < MST(d) < F( + 1)r( + l)1/d 2 1/d, and

1 1 d d 1 1 d

2VFr(d +1)( 1) I /d< tM(d) < 2d - 1r( + 1)r( + )d1) 2 1/d

As d -- oo

tMsT(d) e M(d) 2 . (17)

Proof

The bounds for OtMST(d) follow by combining (4) with (12) and (5) with (16). Note

that r(z+ 1) = zr(z). (17) follows from the fact that limd..o 2i = 1, limd--o,, da =

1 and the asymptotics of the gamma function, i.e. r(k + 1) v/2k+2e -k as

k -- oo. 0

From Theorem 3, we remark that for large dimensions almost every point in the

optimum MST and matching is connected to its nearest neighbor, since we derived
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the lower bound from exactly this observation. Moreover, the value of the MST is

twice the value of the matching problem.

Although we only determined the two constants asymptotically for large dimen-

sions, the upper and lower bounds are close to each other even for small dimensions.

In Table 1 we calculated the upper and lower bounds and the asymptotic values

from Theorem 3 for MST(d) as a function of d.

Table 1: The bounds and the asymptotics for PMST(d) as a function of d.

4.1 Generalizations to more general MST functionals

Steele [9] analyzed the asymptotic behavior of the following MST functional. Let

O(2) be a monotone function and Sn = minT CeET (je ), where the minimization

is taken over all spanning trees. Note that when +(z) = z the problem reduces to

the MST and also, since +(z) is monotone, the MST is the optimal tree for every

b(z). Furthermore, he proved that if +(z) - zk, k < d as z -, 0 and the points

are uniformly and independently distributed in a d ball of volume 1, then with

probability 1

lim S 3(d, k).n..oo n(d-k)/d

13

d Lower bound Upper bound Asymptotics

10 0.866331 0.928511 0.765179

50 1.77978 1.80462 1.71099

100 2.47619 2.49342 2.41971

150 3.01347 3.02743 2.96352

200 3.46761 3.47965 3.42198

300 4.23107 4.24085 4.19106

400 4.87577 4.88422 4.83941

500 5.44433 5.45188 5.41063

1000 7.67823 7.68355 7.65179

�-I---- --- � --



In particular P(d, 1) = flMST(d). By applying exactly the same methods for the

upper and lower bounds we can establish the following bounds for fP(d, k):

k ()< k k kd
d k/r() < (d,k) <•7/dr()k/d. (18)

As a result, by examining the asymptotics of the upper and lower bounds we can

easily obtain that for large d

(k, d) d k/2
2re

5 The best known bounds for the TSP

In this section we summarize the best known analytic bounds for the constant

PfTsp(d) for the TSP. The goal of this section is to compare the bounds and to

reveal that this constant has also an E(vd) behavior, which is consistent with the

behavior of PMST(d) and M(d) from the previous section.

Theorem 4 P3Tsp(d) satisfies

1 1 1 'f2
1r( )( + 1 PTSP(d) < min[2a 1 -r(d), f121/,

dc Ild 2d - _
d d

where cd = Fgy Asymptotically, PTsp(d) = e(vi).

Proof

The lower bound follows by considering both the nearest and the second nearest

neighbor for each point, since in the optimal tour there are two edges coming out

from each point, whose length should be greater than the sum of the two closest

neighbors. The upper bound follows from [1] by applying the strip heuristic and

from the observation that twice the length of the MST is an upper bound of the

optimum TSP tour, where we used the upper bound for the MST from (12). In fact,

in [1] the authors prove a better bound for d = 2, i.e. rTSp(2 ) < 0.9204. Note that

14
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for d = 3,4 the bound from the MST is better than the one of [1] and for d > 5 the

bound of [1] dominates. Asymptotically, for large dimensions

d
< Tsp(d) < X,

i.e. PTsp(d) = e(Vrd). °

In table 2 below we compute the best known upper and lower bounds for the

TSP constant for dimensions d = 2,..., 10.

Table 2: The best known bounds for PTsp(d).

6 A closing conjecture

Our success with the MST and the matching constants, at least asymptotically,

raises the natural question whether the upper bounding method can work for other 

combinatorial problems, in particular the TSP. Despite our attempts we were not

able to generalize the method for the TSP. In light of Theorem 3 and our prelimi-

nary -calculations we conjecture that the asymptotic behavior for large dimensions

of l'Tsp(d) is /, which is consistent with the statements in [1].

15

d Lower bound Upper bound

2 0.625000 0.92040

3 0.646287 1.39589

4 0.684158 1.44641

5 0.724529 1.50053

6 0.764356 1.51309

7 0.802857 1.54043

8 0.839871 1.57531

9 0.875436 1.61419

10 0.909648 1.65517
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